
psptut - a tutorial on writing PSP websites

A introducing tutorial on writing PSP enabled websites using PSP's CGI frontend engine
psp.cgi.

PSP code usually consists of one or more parts of these two classes:

1. Direct output; i.e. (X)HTML code that is directly passed trough the engine into PSP output.

2. Embedded Perl code; Perl code as usual but with some extra objects and data structures
exported by PSP::Engine.

By default, PSP::Engine handles everything that is not embedded Perl code as direct output,
embedded Perl code is written in code blocks. These code blocks are initiated by strings that
are configurable via the CGI::Config object class. By name, these are OpenTag ("<%" by
default) and CloseTag ("%>" by default).

A PSP::Engine object also exports itself into the executed code, so you may access all the
methods described above.

This PSP code example generates a simple HTML page and prints a "hello world":

Executing this code results in:

This method of generating output has 2 downsides:

1. It is quite long winded.

2. You have to take care to not create applications that are vulnerable to XSS (Cross Site
Scripting) attacks.

The latter is very imporant and most other embedded code languages/interpreters, (at the
head PHP) have become infamous for being susceptible to such attacks.

Imagine the following PSP code and a situation, where $a is read from i.e. the URL or from a
database where people store their email addresses or a file or something else other people
may have write access to:

The PSP Coding Tutorial

Page 1Veit Wahlich <cru |at| zodia |dot| de>

NAME

DESCRIPTION

PSP Code Blocks and Data Output
Direct Output and Embedded Perl Blocks

Preventing Cross Site Scripting

<html>
<body>
<% $psp->print("hello world!"); %>
</body>
</html>

<html>
<body>
hello world!
</body>
</html>

<html>
<body>
<% $psp->print($a); %>
</body>

Now $a is read from a database where someone has stored "
" instead of an email address.

Now executing the code above, it will result in this HTML code:

This does not look very critical at a first sight, but it could also be a login form misguiding
people to send their user/password combinations to the attacker or a JavaScript that modifies
an existing login form to send data to the attacker.

To prevent such problems, the package exports among other functions
also the that converts any text string to HTML/XHTML compliant and safe
data.

So by modifying the PSP code above to use htmlize() we eliminate the problem:

Executing this code now results in the following output that is completely HTML/XHTML XSS
safe:

Now as the XSS problem is solved, there is still our first problem; "printing" data to the PSP
output this way is long winded.

To solve this, variations of the OpenTag ("<%") were created as shortcuts: The
PrintSecureOpenTag ("<%=" by default) and the PrintOpenTag ("<%==" by default).

If you want to print data that is possibly untrusted, using one of these two lines is allowed:

Both lines do the same; sanitizing the text using htmlize() and printing the results to the PSP
output queue.

The PSP Coding Tutorial

Page 2Veit Wahlich <cru |at| zodia |dot| de>

</html>

<html>
<body>
click here
</body>
</html>

<%
use PSP::CGI::Transform;
my $a=’click here’;
%>
<html>
<body>
<% $psp->print(htmlize($a)); %>
</body>
</html>

<html>
<body>
click here
</body>
</html>

<%= $thisMayContainInsecureText %>

<% $psp->print(htmlize($thisMayContainInsecureText)); %>

click here

PSP::CGI::Transform
htmlize function

Data Output Shortcuts

Likewise these two PSP code lines are the same and may only be used for data that is really
trusted and/or if you want to print trusted HTML text:

You are strongly advised to use the PrintSecureOpenTag ("<%=") whenever it is possible for
data output to prevent XSS pitfalls.

The way PSP::Engine handles direct output code allows, unlike most other embedded
programming solutions, code that spans over several blocks.

For example, code like this is valid and used very often:

For $a > 0, this results in

and for $a <= 0 in

You may even use loops with for, foreach, while, until, etc.:

The PSP Coding Tutorial

Page 3Veit Wahlich <cru |at| zodia |dot| de>

<%== $thisContainsSecureText %>

<% $psp->print($thisContainsSecureText); %>

<html>
<body>
<%
if($a > 0){
%>
<h1>$a is greater than 0!</h1>

<%
}
else{
%>
<h1>$a is less or equal 0!</h1>

<%
}
%>
</body>
</html>

<html>
<body>

<h1>$a is greater than 0!</h1>

</body>
</html>

<html>
<body>

<h1>$a is less or equal 0!</h1>

</body>
</html>

<%

Block-Overlapping Code

The example above executes into the following output:

The PSP Coding Tutorial

Page 4Veit Wahlich <cru |at| zodia |dot| de>

my $data = [
{
first_name => ’John R.’,
last_name => ’Doe’,
age => 39
},
{
first_name => ’Jane F.’,
last_name => ’Doe’,
age => 22
},
{
first_name => ’John Q.’,
last_name => ’Public’,
age => 28
}
];

%>
<html>
<body>
<table>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Age</th>
</tr>

<%
foreach my $person (@{$data}){
%>

<tr>
<td><%= $person->{last_name} %></td>
<td><%= $person->{first_name} %></td>
<td><%= $person->{age} %></td>
</tr>

<%
}
%>
</table>
</body>
</html>

<html>
<body>
<table>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Age</th>
</tr>

<tr>
<td>Doe</td>
<td>John R.</td>
<td>39</td>
</tr>

Recurring, reusable and/or topically independent code parts are predestined for abstraction
and inclusion.

As an example, we use a header and a footer file:

header.psp:

footer.psp:

content1.psp:

content2.psp:

The PSP Coding Tutorial

Page 5Veit Wahlich <cru |at| zodia |dot| de>

<tr>
<td>Doe</td>
<td>Jane F.</td>
<td>22</td>
</tr>

<tr>
<td>Public</td>
<td>John Q.</td>
<td>28</td>
</tr>

</table>
</body>
</html>

<html>
<head>
<topic>header/footer inclusion example</topic>
</head>
<body>
<h1>Content</h1>

Content
Other Content

</body>
</html>

<% $psp->file(’header.psp’); %>
<h1>This is Content</h1>
<p>
Blah blah blah.
</p>

<% $psp->file(’footer.psp’); %>

<% $psp->file(’header.psp’); %>
<h1>This is Other Content</h1>
<p>
Foo bar foobar.

Including PSP Files and Data Interchange
Using the file Method for File Inclusion

Executing content1.psp now results in:

While content2.psp evaluates to:

It is important to know that executing an include from another directory changes the current
working directory to the one from where the file is loaded, so when that file includes other files,
loads modules using or or uses filesystem operations such as , they
will apply to the directory the current PSP file is in.

You also have to know that including files with a leading slash ("/") are NOT absolute to the
filesystem but relative to the BaseDirectory configuration option. This is usually the
webserver's/vhost's DocumentRoot or the psp-root. If you want to use absolute paths, set the
BaseDirectory to ''.

See for details.

The provides the possibility to hand over an argument variable "$args" to the file
being included.

For saving stack memory and as only one argument is passed to the included file, it is

The PSP Coding Tutorial

Page 6Veit Wahlich <cru |at| zodia |dot| de>

</p>
<% $psp->file(’footer.psp’); %>

<html>
<head>
<topic>header/footer inclusion example</topic>
</head>
<body>
<h1>Content</h1>

Content
Other Content

<h1>This is Content</h1>
<p>
Blah blah blah.
</p>
</body>
</html>

<html>
<head>
<topic>header/footer inclusion example</topic>
</head>
<body>
<h1>Content</h1>

Content
Other Content

<h1>This is Other Content</h1>
<p>
Foo bar foobar.
</p>
</body>
</html>

use require open()

"file Method" in PSP::Engine

file method

Handing Over Data to Includes

intended and recommended that you use an array or hash reference or an anonymous
array/hash:

Both array methods

or

may be accessed from within file.psp through:

The data passed by both hash methods

and

can be accessed through:

Here is a modified version of the example above that hands over a document title and a
background color for the body to the header.psp.

header.psp:

footer.psp:

content1.psp:

The PSP Coding Tutorial

Page 7Veit Wahlich <cru |at| zodia |dot| de>

passing an existing array as reference
my @data = (’a’, ’b’);
$psp->file(’file.psp’, \@data);

using an anonymous array for hand-over
$psp->file(’file.psp’, [’a’, ’b’]);

my $foo = $args->[0];
my $bar = $args->[1];

passing an existing hash as reference
my %data = (foo => ’a’, bar => ’b’);
$psp->file(’file.psp’, \%data);

using an anonymous hash for hand-over
$psp->file(’file.psp’, {foo => ’a’, bar => ’b’});

my $foo = $args->{foo};
my $bar = $args->{bar};

<html>
<head>
<topic><%= $args->{title} %></topic>
</head>
<body bgcolor="<%= $args->{bgcolor} %>">
<h1>Content</h1>

Content
Other Content

</body>
</html>

See for details.

A PSP::Engine object provides the methods and that allow accessing and storing
data inside the $psp object. Also the "$var" variable is provided for direct access to the
storage hash.

Data stored inside the $psp object is preserved amongst all PSP code being executed by this
object. This is especially useful for data required by many different includes, for example a
configuration hash.

In this example we use an include "database.psp" to establish a database connection and
place the DBI object inside the $psp variables storage from where it is used by other includes:

database.psp:

content.psp:

The PSP Coding Tutorial

Page 8Veit Wahlich <cru |at| zodia |dot| de>

<%
$psp->file(’header.psp’, {
title => ’Welcome to content1.psp’,
bgcolor => ’#ff00ff’
});

%>
<h1>This is Content</h1>
<p>
Blah blah blah.
</p>

<% $psp->file(’footer.psp’); %>

<%
use DBI;
my $dbh = DBI->connect(...);
if(defined($dbh)){
connection established
$psp->setvar(’db’, $dbh);
}
else{
connection failed
$psp->print(’Error connecting to the database!’);
}
%>

<%
connect to database first
$psp->file(’database.psp’);
my $dbh = $psp->var(’db’);
%>
<html>
<body>
<%
if(defined($dbh)){
my $sth = $dbh->prepare(
’SELECT first_name, last_name, comments FROM persons’
);
$sth->execute();
while($sth->fetchrow_hashref()){

%>

"file Method" in PSP::Engine

var setvar

Storing Data Inside the $psp Object

For storing data inside the $psp object, the following statements are equivalent:

Likewise you have several variants for accessing stored data. All these statements do exactly
the same:

For more information on storing variables inside PSP::Engine objects, see .

For PSP, CGI operations are supplied by an object of the the class, accessable
through and (for convenience) also through .

An essential element for writing web applications is access to parameters and data supplied
by the web browser.

The following XHTML code will show a simple form and transfer the data to the PSP script
"receive.psp":

The PSP Coding Tutorial

Page 9Veit Wahlich <cru |at| zodia |dot| de>

<h1><%= $_->{first_name}.’ ’.$_->{last_name} %></h1>
<p>
<%= $_->{comments} %>
</p>

<%
}
}
%>
</body>
</html>

$psp->setvar(’foo’,’bar’);

$psp->var->{foo} = ’bar’;

$var->{foo} = ’bar’;

my $value = $psp->var(’foo’);

my $value = $psp->var->{foo};

my $value = $var->{foo};

<html>
<body>
<form action="receive.psp" method="GET">
<p>
Please enter your first name:

<input type="text" name="firstname" />

And your last name:

<input type="text" name="lastname" />

<input type="submit" value="Send!" />
</p>
</form>
</body>
</html>

PSP::Engine

PSP::CGI

Using CGI Extensions

$psp->cgi $cgi

Accessing CGI Parameters and Form Data

Pay attention to the attribute in the tag. This means, the data is to be
URI encoded. Entering "John Q." for the first, "Public" for the last name and pressing the
"Send!" button will cause the web browser to browse to
"receive.psp?firstname=John+Q.&lastname=Public".

It is obvious this is neither sensible use for bigger amounts of data, as the maximum length of
an URL is restricted, nor for sensitive data, as URLs are stored in the web browser's history
and logged on proxy and web servers.

So for bigger and/or more sensitive data (personal data such as real names should already be
respected as sensitive data), you should use the HTTP POST method:

Regardless of the method you used to transfer the HTTP transmit method you can now
access this data through the , as this example shows:

Instead of

The PSP Coding Tutorial

Page 10Veit Wahlich <cru |at| zodia |dot| de>

method="GET" <form>

<html>
<body>
<form action="receive.psp" method="POST">
<p>
Please enter your first name:

<input type="text" name="firstname" />

And your last name:

<input type="text" name="lastname" />

<input type="submit" value="Send!" />
</p>
</form>
</body>
</html>

<%
my $firstname=$cgi->param(’firstname’);
my $lastname=$cgi->param(’lastname’);
%>
<html>
<body>
<%
if(defined($firstname) && defined($lastname)){
%>
<p>
Welcome <%= $firstname.’ ’.$lastname %>!
</p>

<%
}
else{
%>
<p>
Go back and fill in the complete form!
</p>

<%
}
%>
</body>
</html>

my $firstname=$cgi->param(’firstname’);
my $lastname=$cgi->param(’lastname’);

$cgi->param() method

you could also use direct access to the CGI parameter hash,

whatever is most suitable for your code or does your usual coding style match best. Also
remember you may use instead of .

The following example shows the possibility of using the for creating a
list of all CGI parameters and their values supplied:

In many situations it is required to call a script with multiple parameters of the same name, i.e.
(X)HTML forms that allow the selection of more than one element of the same name.

If PSP::CGI receives a parameter of the same name twice or more, the values are appended
to the predecessors, separated by a ASCII NUL character (0x00). To release you from dealing
with this, PSP::CGI provides the that returns an array with one element
per value instead of a single string.

Have a look at this XHTML example:

The PSP Coding Tutorial

Page 11Veit Wahlich <cru |at| zodia |dot| de>

my $firstname=$cgi->param->{firstname};
my $lastname=$cgi->param->{lastname};

<html>
<body>
<h1>CGI Parameters</h1>
<table>
<tr>
<th>Name</th>
<th>Value</th>
</tr>

<%
foreach(sort($cgi->params)){
%>

<tr>
<td><%= $_ %></td>
<td><%= $cgi->param($_) %></td>
</tr>

<%
}
%>
</table>
</body>
</html>

<html>
<body>
<form action="multiselect.psp" method="POST">
<h1>Select the extra ingredients for your pizza</h1>
<p>
<select name="extras" size="3" multiple="multiple">
<option value="cheese">Extra Cheese</option>
<option value="pepperoni">Pepperoni</option>
<option value="tuna">Tuna</option>
<option value="anchovies">Anchovies</option>
<option value="garlic">Garlic</option>
<option value="peppers">Sweet Peppers</option>
<option value="hotpeppers">Hot Peppers</option>
</select>

$psp->cgi->param $cgi->param

$cgi->params() method

multiparam method

Multiple Parameters of the Same Name

For cases like the multiple options form above, allows easy
evaluation multiple parameters of the same name, as this example shows:

Cookies are short text strings stored on the clients side, usually in a file called cookies.txt, that
are transmitted back to the server when a corresponding website is visited. The server may
use them to store recognition data on the client side, for example user tracking IDs,
authentication credentials or status information.

Look at this example, showing you how to list, request and store cookies:

The PSP Coding Tutorial

Page 12Veit Wahlich <cru |at| zodia |dot| de>

<input type="submit" value="Order!" />
</p>
</form>
</body>
</html>

<html>
<body>
<h1>Extras chosen</h1>

<%
foreach($cgi->multiparam(’extras’)){
%>

<%= $_ %>
<%
}
%>

</body>
</html>

<html>
<body>
<h1>Cookies</h1>
<table>
<tr>
<th>Name</th>
<th>Value</th>
</tr>

<%
foreach(sort($cgi->cookies)){
%>

<tr>
<td><%= $_ %></td>
<td><%= $cgi->cookie($_) %>
</tr>

<%
}
$cgi->setcookie(’test1’,’foo’,5);
$cgi->setcookie(’test2’,’bar’,10);
%>
</table>
<p>
Two cookies were set now: test1=foo (5 seconds), test2=bar (10

seconds)
</p>

$cgi->multiparam()

Getting and Setting Cookies

The gets a list of the names of all cookies the web browser sent (back) to the
server. This is much like the we discussed before.

The same applies to the which resembles the but returns the
value of a given cookie name instead of a CGI parameter. Equally you may use the

syntax to gain direct access to the PSP::CGI object's cookie hash.

Setting a cookie is somewhat more complex, although the example above impressively shows
how easy setting a cookie can be using PSP. The 3 parameters the in the
example above accepts are:

1. The name of the cookie to store.

2. The value of the cookie.

3. How long (in seconds) the cookie will remain on the web client's cookie.txt, before it is
deleted.

In addition to these 3 parameters, the method accepts optional restriction parameters as a
hash: The parameter allows you to set a domain or host name where
the cookie may be transmitted to, the parameter restricts the cookie to a
URI path and the parameter makes sure the cookie is only transmitted
when the browser accesses a secure (encrypted, HTTPS) website.

So this more complex example sets a cookie named "person" with value "John Q. Public" that
is valid for 2 minutes (120 seconds) and is transmitted back to every host under the "foo.bar"
domain (i.e. to "img.foo.bar" as well as to "www.foo.bar"), but only if the requested resource is
under the "/private/data/" path and the connection is SSL secured ("https://..."):

If the domain, path and secure options were not set, the cookie would only be transmitted to
the host that set it, but regardless to which URI path or whether the data is sent over a secure
channel.

PSP::CGI also supports multipart/form-data encoded HTTP transports, usually utilized for
uploading files to a server using the HTTP and HTTPS protocols. A XHTML form providing a
HTTP file upload for JPEG images looks like this:

The PSP Coding Tutorial

Page 13Veit Wahlich <cru |at| zodia |dot| de>

<p>
Reload page to check.
</p>
</body>
</html>

<%
$cgi->setcookie(’person’,’John Q. Public’,120,
domain => ’*.foo.bar’,
path => ’/private/data/’,
secure => 1
);

%>

<html>
<body>
<form action="upload.psp" enctype="multipart/form-data"

method="post">
<p>
<input type="file" name="image" accept="image/jpeg" />

<input type="submit" value="Upload!" />

cookies method
params method

cookie method param method

setcookie method

$cgi->
cookie->{$key}

domain => $domain
path => $path

secure => $bool

Receiving HTTP File Uploads

To access file uploads, a PSP::CGI object offers two methods: The returns
an array of the names of all file uploads, the gives you access to the data
uploaded.

This example prints the filename and the size of an uploaded file and saves its content to a file
on the webserver.

Like for the and , it is also possible to access file uploads directly through
.

For more information on HTTP file uploads, see .

The PSP Coding Tutorial

Page 14Veit Wahlich <cru |at| zodia |dot| de>

</p>
</form>
</body>
</html>

<html>
<body>
<%
my $fh;
my $file = $cgi->upload(’image’);
if(defined($file)){
%>
<table>
<tr>
<td>Filename:</td>
<td><%= $file->{filename} %></td>
</tr>
<tr>
<td>Size:</td>
<td><%= $file->{size} %></td>
</tr>
<tr>
<td colspan="2">show</td>
</tr>
</table>

<%
open($fh,’>’,’image.jpg’)
&& do{
print($fh $file->{content});
close($fh);
};

}
else{
%>
<p>
You did not upload a file. Repeat.
</p>

<%
}
%>
</body>
</html>

uploads method
upload method

param cookie

"upload method" in PSP::CGI

$cgi-
>upload->{$key}

Finally, another important task of PSP::CGI objects is to offer the possibility of defining custom
HTTP headers. Popular headers to set/change are "Content-Type:" for defining a content type
other than "text/html", for example "image/jpeg" for JPEG images or "text/plain" for plain text
output, and the "Status:" header to generate HTTP status messages or i.e. in conjunction with
the "Location:" header to create HTTP redirects.

This example uses the to set the "Content-Type:" header, also setting the
character set of the web site to Unicode/UTF-8:

Another example creates a "HTTP 302 Moved Temporarily" status message, commonly called
a "HTTP redirect", telling the web browser to download the requested data from another/a
new location:

Especially for HTTP status messages, PSP provides the that
provides a much easier and cleaner way for generating such messages. The module will be
discussed later.

The exports some functions that are to help you to simplify CGI
parameter handover.

The most frequent way of handing over CGI parameters is in URIs, for example in (X)HTML
links like this:

Creating such an URI is often fiddly, first of all because data usually requires special
encoding. Functions for URI encoding are provided by PSP, in particular by the

from the , but creating such code is still bugging and
inflexible::

But the really eases and makes concise this task:

The PSP Coding Tutorial

Page 15Veit Wahlich <cru |at| zodia |dot| de>

Custom HTTP Headers

Generating URI Parameters

setheader method

PSP::CGI::HTTP module

PSP::CGI::Generate module

encodeHttp
function PSP::CGI::Transform module

generateGet function

<%
$cgi->setheader(’Content-Type’ => ’text/html; charset=utf-8’);
%>

<%
$cgi->setheader(
Status => ’302 Moved Temporarily’,
Location => ’http://foo/bar/blah.html’
);

%>

click here

<%
use PSP::CGI::Transform;
%>
<a href="http://foo.bar/foobar.psp?a=<%= encodeHttp($foo) %>&b=<%=
encodeHttp($bar) %>">click here

<%
use PSP::CGI::Generate;
%>
<a href="http://foo.bar/foobar.psp?<%= generateGet(a => $foo, b =>
$bar) %>">click here

CGI Parameter Generation Helpers

So the last one does exactly the same as the example given before, but it generates the
HTTP GET string directly from a given hash, also taking the work of encoding both keys and
values off you.

This function becomes even more useful if your data to be transmitted is already stored in a
hash, referenced hash or anonymous hash, as the function accepts all of these types. You
may even give more than one hash at once, but mind to not mix native hashs and referenced
hashs.

Both examples are correct:

But this would be completely wrong:

If you have both ordinary and referenced/anonymous hashs and want to mix it, you have
either to convert the referenced and anonymous ones to ordinary ones, or you reference the
ordinary hashs. Because of performance and stack memory reasons, you are advised to use
the latter one. The last example corrected in such a way now looks like this:

The PSP Coding Tutorial

Page 16Veit Wahlich <cru |at| zodia |dot| de>

<%
use PSP::CGI::Generate;
my %hash = (
a => 1,
b => 2,
c => 3
);

%>
<a href="getthis.psp?<%= generateGet(d => 4, %hash, e => 5) %>">
Click. Click! CLICK!!!

<%
use PSP::CGI::Generate;
my $hash = {
a => 1,
b => 2,
c => 3
};

%>
<a href="getthis.psp?<%= generateGet({d => 4}, $hash, {e => 5}) %>">
Click. Click! CLICK!!!

<%
use PSP::CGI::Generate;
my %hash = (
a => 1
);
my $hash = {
b => 2,
c => 3
};

%>
<a href="getthis.psp?<%= generateGet($hash, %hash, {d => 4}, e => 5)
%>">
Click. Click! CLICK!!!

<%

See the for details.

Another frequently utilized way for transmitting data is the use of so called hidden inputs in
(X)HTML forms. An example:

Creating such a form is already really easy as the PrintSecureOpenTag ("<%") does the
(X)HTML encoding for you, i.e.

but using the it becomes even easier and clearly arranged:

The PSP Coding Tutorial

Page 17Veit Wahlich <cru |at| zodia |dot| de>

use PSP::CGI::Generate;
my %hash = (
a => 1
);
my $hash = {
b => 2,
c => 3
};

%>
<a href="getthis.psp?<%= generateGet($hash, \%hash, {d => 4, e =>
5}) %>">
Click. Click! CLICK!!!

<form action="manageitem.psp" method="post">
<p>
Enter your password if you really want to delete this item:

<input type="password" name="pass" />
<input type="submit" value="Kill it!" />
<input type="hidden" name="do" value="deleteItem" />
<input type="hidden" name="item" value="1234" />
</p>
</form>

<form action="manageitem.psp" method="post">
<p>
Enter your password if you really want to delete this item:

<input type="password" name="pass" />
<input type="submit" value="Kill it!" />
<input type="hidden" name="do" value="deleteItem" />
<input type="hidden" name="item" value="<%= $itemID %>" />
</p>
</form>

<%
use PSP::CGI::Generate;
%>
<form action="manageitem.psp" method="post">
<p>
Enter your password if you really want to delete this item:

<input type="password" name="pass" />
<input type="submit" value="Kill it!" />
<%= generateForm(do => ’deleteItem’, item => $itemID) %>
</p>
</form>

generateGet function

generateForm function

Generating XHTML Hidden Forms

Regarding hashs and referenced/anonymous hashs, this function accepts the same
parameters as the described above.

See the for details.

Veit Wahlich

E-Mail: cru |at| zodia |dot| de

WWW:

v0.7 Wednesday, 18 January 2006

Copyright 2004-2006 Veit Wahlich

This software is distributed as free (libre) software under the terms of the GNU General Public
License, version 2 < >. The author disclaims responsibility
of any damage or harm caused directly or indirectly by usage of this software. Use only at
your own risk.

The PSP Coding Tutorial

Page 18Veit Wahlich <cru |at| zodia |dot| de>

generateGet function

generateForm function

http://home.ircnet.de/cru/

http://www.gnu.org/copyleft/gpl.html

AUTHOR

VERSION

COPYRIGHT/LICENSE

